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NEW ESTIMATES FOR RITZ VECTORS 

ANDREW V. KNYAZEV 

ABSTRACT. The following estimate for the Rayleigh-Ritz method is proved: 

IA-A Al(i2,u)I ? IAf2-Aui2 sin Z{u; U}, 1lu1 = 1. 

Here A is a bounded self-adjoint operator in a real Hilbert/euclidian space, 
{A, u} one of its eigenpairs, U a trial subspace for the Rayleigh-Ritz method, 
and {A, ii} a Ritz pair. This inequality makes it possible to analyze the fine 
structure of the error of the Rayleigh-Ritz method, in particular, it shows 
that I (i2, u) I < Ce2, if an eigenvector u is close to the trial subspace with ac- 
curacy e and a Ritz vector ii is an e approximation to another eigenvector, 
with a different eigenvalue. Generalizations of the estimate to the cases of 
eigenspaces and invariant subspaces are suggested, and estimates of approxi- 
mation of eigenspaces and invariant subspaces are proved. 

1. INTRODUCTION 

Let A be a bounded self-adjoint operator in a real Hilbert (or euclidian) space, 
and {A, u} be an eigenpair, 

Au = Au, IuHl = 1. 

A Ritz pair, {A, i}, is, by definition, an eigenpair of the operator A = (QA) I 
where Q is an orthoprojector on a trial subspace U and IC means the restriction of 
the operator to its invariant subspace U; 

Aui =ij Au, E U. Piull = 1. 

The behavior of a Ritz vector as a function of the trial subspace is complicated 
and still not completely studied. For example, let an eigenvector u be close to the 
trial subspace with accuracy e and a Ritz vector ii be an e approximation to another 
eigenvector, with a different eigenvalue. Either of the two assumptions leads to the 
trivial estimate 

I(i,u)l ' Cca 

Do they together give 

T l(hgu)ac < p eah 

The following basic estimate gives the positive answer to this question. 

Received by the editor May 10, 1995 and, in revised form, September 5, 1995 and June 3, 1996. 
1991 Mathematics Subject Classification. Primary 65F35. 
Key words and phrases. Eigenvalue problem, Rayleigh-Ritz method, approximation, error 

estimate. 
This research was supported by the National Science Foundation under grant NSF-CCR- 

9204255 and was performed while the author was visiting the Courant Institute. 

(?)1997 American Mathematical Society 

985 



986 ANDREW V. KNYAZEV 

Theorem 1.1. If A 78 A, then 

(iiiiu) Mi? Kiiu)I < A A Il(I-Q)ull. 

In the next section a somewhat more general formulation of the basic estimate 
is presented in Theorem 2.1 along with two dual proofs. 

We note that it is often important to analyze several eigenspace components 
together rather than just one component, as in Theorem 1.1 and Theorem 2.1. 
Such analysis is carried out in section 3. The purpose is to make clear a behavior of 
Ritz vectors when II (I - Q)AQHI is small, e.g. for a case when the trial subspace is 
close to an invariant subspace of the operator A. Interestingly, generalizations of the 
two dual proofs of Theorem 2.1 lead to two different statements, Theorem 3.1 and 
Theorem 3.2. Theorem 3.1 shows that the approximation error of an eigenvector by 
the corresponding Ritz vector is essentially orthogonal to this invariant subspace. 
Theorem 3.2 leads to a dual statement that the orthoprojection of any eigenvector 
from the invariant subspace onto the trial subspace essentially coincides with a Ritz 
vector. 

There is a classical fact that the Ritz procedure, applied to a linear equation with 
a self-adjoint positive operator, produces an approximation in a trial subspace which 
is just the orthogonal projection of the solution onto the subspace with respect to 
the "energy" scalar product. Perhaps, by analogy with this fact, there was a well- 
known naive statement that the Rayleigh-Ritz procedure, applied to an eigenvalue 
problem, gives an approximation (a Ritz vector) to an eigenvector which must be 
an orthogonal projection of the eigenvector onto the trial subspace, because of "the 
optimality" of the Rayleigh-Ritz procedure; see a discussion in Parlett [14]. Such a 
point of view was popular among specialists of structural analysis in the seventies, 
who used subspace iterations - the method of computing a sequence of subspaces 
that tends to an invariant subspace. The present paper shows, see Remark 3.3 
based on Theorem 3.2, that the engineers were right, in their own way, though 
strictly speaking, the statement is not mathematically correct. 

A weaker, asymptotic variant of Theorem 3.1 was formulated in [11]. The proof, 
based on a perturbation theory, was published in Russian by the author in [9]. 
Estimates of Theorem 3.2 and Theorem 3.3, the latter was proved in Saad [15], are of 
a traditional kind and many very similar statements can be found in the literature; 
see e.g. [3] and a recent survey [1]. However, Theorem 3.2 and Theorem 3.3 have 
the advantage that the estimates are not asymptotic and the constants are sharp 
and cannot be improved; cf. Remark 3.4. 

In section 4, further extensions of the main Theorem 2.1 are made for the case of 
invariant subspaces of A and A instead of eigenspaces. Such generalizations are of 
particular importance for the analysis of approximations of an invariant subspace, 
corresponding to a cluster of eigenvalues, or even an interval of the continuous 
spectrum of A; see [6]. Two estimates of approximations of an invariant subspace 
are proved, of Corollary 4.1 and Theorem 4.3, as simple consequences of the main 
results. The statement of Corollary 4.1 is already known, see Davis and Kahan 
[4] and cf. also Theorem 11.7.11 of [14]. Theorem 4.3 is a generalization of Saad's 
estimate [15], [14] for the case of invariant subspaces. Theorem 4.1 appeared to be 
quite useful and has been already applied in the author's joint paper with Bramble 
and Pasciak [2] on preconditioned subspace iterations for eigenproblems. 
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In section 5, we consider a particular case of complete invariant subspaces, when 
constants of the inequalities can be further estimated if there is a gap in the spec- 
trum. 

Let us finally mention that I (I - Q)AQII can be small not only in the case when 
the trial subspace is close to an invariant subspace of the operator A. If the operator 
A is compact and for a sequence of trial subspaces the corresponding orthogonal 
projectors Q strongly converge to the identity operator, then II(I - Q)AQI, in fact 
even II(I - Q)Agj, tends to zero [5]. Such a situation is typical for the Rayleigh- 
Ritz method applied for approximation of low eigenpairs of differential operators, 
e.g. using finite elements [16], [3]. However, if the operator A is not compact, then 

(I - Q)AQj is not necessarily small, even for Q strongly converging to the identity 
[6]. The importance of (I - Q)AQI is based on the representation 

A=QAQ + (I-Q)A(I - Q) + (I - Q)AQ + QA(I-Q), 

and the fact that 

II(I-Q)AQ + QA(I-Q)Ij < ? (I-Q)AQII = IIQA(I-Q)II. 
Considering the last two terms in the representation of A as a perturbation and 
using Theorem 4.10, p. 291 of [8] lead to the following important estimate, cf. 
(11.5.1) of [14], 

(1) dist {a(A), a(A) U f ({(I-Q)A(I-Q)} Lul ) } < (I - Q)AQI. 

Here a(*) is the spectrum of an operator *. In particular, this shows, that there 
is no spectral pollution [6] if (I - Q)AQHI is small. Examples of polluting and 
non-polluting approximations of the continuous spectrum of operators related to 
the MHD equations can be found in [6]. 

The results of the paper were presented at the Fifth SIAM Conference on Applied 
Linear Algebra, June, 1994, in Snowbird, Utah. 

2. THE MAIN THEOREM 

Let P and P be orthoprojectors on eigenspaces of the operators A and A, cor- 
responding to the eigenvalues A and A: 

(2) AP = AP, AP = AP. 

It is not required that P and P be orthoprojectors on complete eigenspaces; and 
there are no restrictions on the dimensions of their images. 

There are several important equalities that stem from the definition (2) 

(3) AP = PA, AP = PA, QP = PQ = P, Q(A- A)P = 0. 

If, in particular, P and P are orthoprojectors on the one-dimensional subspaces 
span{u} and span{ut}, respectively, then the following equalities hold 

HIPPII = IIPfiI = I(i,u)j = IIPuII = IIPPII, for Ijull - lHu = 1, 

and the estimate of the basic Theorem 1.1 becomes a particular case of an estimate 
of the next theorem. 

Theorem 2.1. If A -- A, then 

(4) IIPPII = LAPPI< 11 (I - Q)PI. 
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Proof. [First] We have 

1A - AIjPPIJ = II(A - A)PPI| - IIP(A - A)PII 

= IIP(I - Q)(A - A)Pll <? |P(I - Q)IIII(A - A)Pll 

= I(I-Q)PIH || (A-A)PH1. 

Here the first three equalities are based on (2) and (3). The final equality is a 
particular case of a general equality, 

IIFGgj = II(FG)*l = IIGFIJ 

for linear bounded self-adjoint operators F and G. (Below such equalities will be 
used without special references.) D 

Proof. [Second] By exchanging the P and P in the previous arguments, we obtain 

IA - AIlHPP'l = IIP(A- A)PPIH 

=IIP(A- A)QPPl = IIPA(I - Q)Pll 

< IIPA(I - Q)H I(I - Q)Pl = I(I - Q)APH 1(I - Q)Pl 

= IV(A-A)PHI (I-Q)Pll, 

which gives the second proof of the theorem. O 

Remark 2.1. It is useful to note, that 

(5) (I - P)AP = (A - A)P = (I - Q)(A - A)P = (I - Q)AP 

due to (I-Q)P = 0 and (3). 

3. ACCURACY ESTIMATES FOR EIGENSPACES 

Let R and R be orthoprojectors on invariant subspaces of the operators A and 
A, such that Im R C Im Q. Then 

(6) AR= RAR= RA, AR= RAR= RA, QR= RQ = R. 

Replacing R by P in Theorem 2.1 and using the first proof, we obtain the 
following more general statement. 

Theorem 3.1. If 
d= inf IVL-A >0, 

IJE({RAR}jI.n R) 

then 

IIRPIH < d(I- Q)APg (I - Q)RH. 

Proof. The spectrum a({RAR} Im R) does not contain A, therefore the operator 
{R(A - A)R} Ilm R has a bounded inverse and 

dIIRPII < 11(A - A)RP 1 = IIR(A -)PI1 

- QR(I-Q)(A - A)Pl < ||R(I - Q)(I- Q)(A -)Pll 

= (I - Q)Rl(I - Q)AP- 

by (5). 0 
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Let us now consider the particular case R = I-P, in view of the fact II(I-Q)RII < 
1. 

Corollary 3.1. If 

d= inf Iv-A > O. R= I-PI 
VEcr({RAR}Iilm R) 

then 

11 (I - P)PIj < 11 I-Q)APj 
-d 

Remark 3.1. If the eigenvalue A is simple, and P and P are orthoprojectors on the 
one-dimensional subspaces span{u} and span{ii}, respectively, then the estimate of 
Corollary 3.1 converts into a well known estimate due to Kato [7] 

sin Z{u; } ? IIAii - Aii 
l- = 1. 

infvEa(A)\A V - Af 

By replacing P by ft in the second proof of Theorem 2.1 we get 

Theorem 3.2. If 
inf Iv-Al>O, i3&i({RAR}lIi A) 

then 

PII < 1((-Q)ARII I-OM 
d 

Proof. The spectrum a({RAR} JIm A) does not contain A, therefore the operator 
{R(A - A)R} Im has a bounded inverse and 

dIIRPII < JJR(A - A)RPII 

= IlR(A - A)QPIl = IIRA(I - Q)PII 

< IIRA(I - Q)I 11 (I - Q)PJl = 11(I - Q)ARII 11(I - Q)PII 
by (5). 

Remark 3.2. It is clear that 

(7) 11(I - Q)APII < 11(I - Q)AQ, 11(1 - Q)ARll < I(I - Q)AQIl 
because of 

ImP C ImQ, ImR C ImQ. 

In the particular case R = Q - P, taking into account the previous remark, we 
can make the following conclusion from Theorem 3.2. 

Corollary 3.2. If 

d= inf LJ-AI >, R=Q-PI 
i, E({RAR}I A) 

then 

j (Q - P)P < 1(-IQ)AQI ( - Q)PII. 
d 
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Remark 3.3. Suppose that eigenvalue A is simple, and P and P are orthoprojectors 
on one-dimensional subspaces span{u} and span{uit, respectively, where u is an 
eigenvector corresponding to the eigenvalue A, and ui is a Ritz vector corresponding 
to a Ritz value A. Let IIuII = 1. We normalize ii such that i2 = Pu, assuming that it 
is not a zero vector. We denote the orthoprojection of the eigenvector u onto the 
trial subspace by u* = Qu. Then the previous estimate can be rewritten as 

II (I - Q)AQH 1 - 
d 

If the trial subspace is an e approximation of an invariant subspace of the operator A 
in terms of the gap between subspaces (see Remark 4.1 below), then (I - Q)AQ2 
and IIu - u* are of order e. The denominator d can be typically bounded from 
below by a positive constant if A is properly chosen; see Section 5. Therefore, the 
orthoprojection u* of the eigenvector onto the trial subspace is essentially equal to 
the Ritz vector fi, namely, with 62 accuracy. 

Finally, using the inequality 

I (IP)PHI2 < II(Q - P)p2 + II(I - Q)pI2 
that follows from the equalities 

I-P=(Q-P)?(I-Q), (Q-P)(I-Q)=O, 

we obtain the theorem, that was proved by Saad [15] for the case of a simple 
eigenvalue A of a matrix A. 

Theorem 3.3. If 

inf Iv-A >O, R=Q-P, 
iMEC({RAR}Iim jR) 

then 

II(I-P)Pll2 < [1+ d( 2 Q ]I(-)I 

Remark 3.4. It was shown in [11], [9] that this estimate is stronger than the classical 
one of Vainikko [13], even though it looks much simpler and uses less information. 
Also, for fixed positive numbers d and r examples of operators A and projectors 
P were constructed in [11], [9], such that I(I - Q)AQI = r and the inequality of 
Theorem 3.3 becomes an equality. Therefore the estimate of Theorem 3.3 cannot 
be improved without new information. 

4. ACCURACY ESTIMATES FOR INVARIANT SUBSPACES 

We now redefine P and P as orthoprojectors on invariant subspaces of the op- 
erators A and A, corresponding to the spectrum of A in the interval [A - 6, A + 6] 
and of A in the interval [A -6, A + 6] 

AP = PA, IIP(A - A)PHI < 6, AP = PA, IIP(A - A)Pll <. 

Then we do not require, that these subspaces incorporate all and/or the complete 
eigenspaces of the spectrum in the intervals. There are no restrictions on the 
dimensions of their images. 

In this section, we generalize all the statements of the previous section to the 
case of invariant subspaces instead of eigenspaces, using the new definitions of P 
and P given above. 
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Theorem 4.1. If 

d= inf Iv- > 
VE07({RAR}IIm R) 

then 

IIRP < d I(I-(Q)AP I K' - Q)RIl. 

Proof. We have 

dlIRPII < 11(A - A)RPII = IIR(A- )PHl 

< IIR(I - Q)(A - A)PHl + IHRQ(A - A)Pll 

< IIR(I - Q)II(I - Q)(A - A)Pl + IRPIIIHP(A - A)PH 
= 11 (I - Q)RHH 11 (I - Q)APII + 6IIRPII. 

The theorem is proved. D 

We can, considering the particular case of R = I - P and using the trivial 
inequality II(I - Q)Rfl < 1, in analogy with an argument of the previous section, 
give the statement, which was proved by Davis and Kahan, see [4] and cf. also 
Theorem 11.7.11 of [14]. 

Corollary 4.1. If 

d = inf lv-A > 6, R=I-P, 
VE07({RAR}jIm R) 

then 

II (I - Q)APIJ || (I -P)PII < 
d I-)A6 

We now prove an analog of Theorem 3.2 for invariant subspaces. 

Theorem 4.2. If 

inf Iv-Al > 6, 
i2E0l({RAR}jIm A) 

then 

11~ ~ ~~ ~1 -J~ - 
IlIQA# l 

Q)PII. 
liii - d- 

Proof. 

dllRPHl < llR(A - A)RPl 

= -l)(A-A)QPIl < IlRA(I - Q)PIH + flR(A - A)PH 

< flRA(I - Q) l (I - Q)PII + IfP(A - A)PI~lRPl 

< fl(I - Q)ARfIfl(I - Q)Pfl + S1HRPll. 

The theorem is proved. O 

Choosing fR = Q - P in Theorem 4.2 and taking into account Remark 3.2 we 
can make the following conclusion. 
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Corollary 4.2. If 

inf Ijv-A >6,1R =Q-P, 
vEci({RAR}j1m R 

then 

11 ( - P)Pll I-Q)AQI fl(I - Q)PH. 

Now, using the same arguments as in the previous section, we prove the following 
generalization of Saad's Theorem 3.3 for the case of invariant subspaces instead of 
eigenspaces. 

Theorem 4.3. If 

d = inf Iv-Al > 6, f P, 
iE&({RAR}JIm A) 

then 

Hl(I-P)PH12 < 1+ II(I -Q)AQ C21 (I2 Q)PH2 

Remark 4.1. It is well known that 
* I (I - P)PH < 1 measures the proximity of Im P to Im P; 
* I IP - = max{fl(I - P)P, II(I - P)P} < 1 measures the proximity (the 

gap) between Im P and Im P; 
* (I - P)PH I 1 measures the proximity of ImP to ImP. 

The proximity, for example, of Im P to Im P means by Theorem 6.34 of [81, p. 56, 
the proximity between ImP and a subspace of ImP, i.e. if I(I - P)PII < 1, then 
there is a subspace in Im P with an associated orthogonal projector P' such that 

(I-P)PHl = iP - P'/l < 1. 
If 

dimImP = dimImP < oo, 

then 

(8) H1(I-P)Pll = lip-Pil = 11(I-P)pll 

as follows from Theorem 6.34 of [8]. Therefore, Corollaries 3.1 and 4.1 estimate the 
proximity of Im P to Im P, while Theorems 3.3 and 4.3 estimate the proximity of 
Im P to Im P. In the. case dim Im P = dim Im P < oo all of them estimate the gap 
between Im P and Im P. 

5. ACCURACY ESTIMATES FOR COMPLETE INVARIANT SUBSPACES 

By choosing subspaces properly, and by using statement (1), we can derive a 
priori estimates of d and d in the denominators of estimates. 

Assume that the points A - S - 0 and A + 6 + 0 do not belong to the spectrum 
of A. Let E(v) be a spectral family associated with A, i.e. 

+00 

A=]_ v dE(v), E(v-0) = E(v). 
-00 

Then it is possible to define the projector P as 

1 +dE(v) = E(A? ? 6 0) - E(A - 6). 



NEW ESTIMATES FOR RITZ VECTORS 993 

With such a definition, P is the orthogonal projector on the invariant subspace of 
the operator A, which corresponds to the spectrum of A in the interval [A -6, A +? ]; 
this subspace incorporates all and complete eigenspaces of A with the spectrum in 
the interval. Further, let for a number A > 0 the open intervals (A - 8 - A, A - 6) 
and (A + 6, A + 6 + A) contain no points of the spectrum of A, i.e. there is at least 
a A gap in the spectrum of A around the interval [A - 6, A + 6]. Let 

defII\,I A 
r = 11(I -Q)AQJI < 2- 

Then, by statement (1), A-6-r-0 and A+6+ r +0 do not belong to the spectrum 
of the operator A, while the interval [A -6- r, A + 6 + r] may contain points of the 
spectrum of the operator A. Let E(v) be a spectral family associated with A, and 
define the projector P as 

A+6+r+0 

p=jdE dE(v) = E(A+6+r+0) -E(A-6-r)- 

This makes P the orthogonal projector on the invariant subspace of the operator 
A, corresponding to the spectrum of A in the interval [A - 6 - r, A + 6 + r]; this 
subspace incorporates all and complete eigenspaces of A with the spectrum in the 
interval. To comply with the previous definition of P, we set 

A=A, 6=6+r. 

Now it is clear, that in Corollary 4.1 d = A + 6 + A -= 6 + A, and the estimate 
of Corollary 4.1 takes the form 

(9) - fl(I-Q)APjj r <1 
(9) 11jj(I -P)P1Ij< A-r <A-r< 

because of the condition A > 2r introduced above. 
To estimate d of Theorem 4.3, we have to use statement (1) again to conclude 

that inside the interval (A -6- A + r, A + 6 + A - r) there are no points of spectrum 
of the operator A except these of the spectrum of the operator {PAP} Imp . But 

a(A) = a ({5PAP} IImP) U f ({RAR} JImR), R = Q - P. 

Therefore, d = A + 6 + A - r - A = 6 + A - r, and the estimate of Theorem 4.3 
converts into 

(10) 11(I- P)PI ? [ 1+ (A -r)] j(I - Q)PjI2. 

Remark 5.1. We can draw the conclusion that small r affords the proximity of 
Ritz vectors to an eigenspace of A by (9), but does not necessarily ensure a good 
approximation of the complete eigenspace except for the case when the dimension 
of the eigenspace is known a priori (and is finite). We can then use (8) if the 
dimension of the approximation subspace, spanned by Ritz vectors, happens to be 
the same; however, we cannot guarantee that it will be the same based just on the 
fact that r is small. A one-dimensional trial subspace spanned by a vector which 
is close to a two-dimensional eigenspace provides such an example. 

In contrast, estimate (10) makes certain that there exists a good Ritz approxima- 
tion of an invariant subspace if the invariant subspace is close to the trial subspace, 
but the dimension of the Ritz approximation may appear to be larger than the 
dimension of the original invariant subspace. In other words, the approximation 
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subspace may contain spurious Ritz vectors. Then the corresponding spurious Ritz 
values may approximate none of the points of the spectrum of A, what is called 
spectral pollution [6]. For example, let us consider a two-dimensional trial subspace 
spanned by an eigenvector corresponding to the zero eigenvalue and by the sum of 
two normalized eigenvectors corresponding to plus and minus one eigenvalues of 
a diagonal 3-by-3 matrix. Then, there are two zero Ritz values. According to an 
assumption of this section, we have to consider the whole trial subspace as an ap- 
proximation to a single eigenvector corresponding to the zero eigenvalue. Evidently, 
the right-hand side of (10) is zero in this case and one of the Ritz vectors just equals 
the eigenvector, but another Ritz vector is spurious. 

In any case, we need a gap in the spectrum to control the denominator in the 
estimates. There is an example in Section 11.6 of [14] that small r does not even 
gain the proximity of Ritz vectors to an eigenspace of A if the gap tends to zero. 

Remark 5.2. There is also a sharp accuracy estimate [18], [17] for a finite dimen- 
sional invariant subspace corresponding to a group of leading eigenvalues just in 
terms of the accuracy approximation of the eigenvalues. The simplified proof for 
the particular case of an eigenspace instead of an invariant subspace can be found 
in [10]. 

Remark 5.3. Many symmetric generalized eigenproblems with integral, or differ- 
ential operators are known to be equivalent to an eigenproblem for a bounded 
self-adjoint operator A in a Hilbert space, and the Rayleigh-Ritz method for the 
original eigenproblem gives exactly the same approximations as being applied to 
the eigenproblem for A. The results of the paper can be easily extended to such 
eigenproblems, for example, to analyze accuracy of the FEM method. Estimates 
like (10) with generic constants are already well known. 
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